Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles.
نویسندگان
چکیده
Protection of the human respiratory system from exposure to nanoparticles is becoming an emerging issue in occupational hygiene. The potential adverse health effects associated with particles of approximately 1-100 nm are probably greater than submicron or micron-sized particles. The performance of two models of N95 half-facepiece-filtering respirators against nano-sized particles was evaluated at two inhalation flow rates, 30 and 85 l min(-1), following a manikin-based protocol. The aerosol concentration was measured outside and inside the facepiece using the Wide-Range Particle Spectrometer. Sodium chloride particles, conventionally used to certify N-series respirators under NIOSH 42 CFR 84 regulations, were utilized as the challenge aerosol. The targeted particle sizes ranged from 10 to 600 nm, although the standard certification tests are performed with particles of approximately 300 nm, which is assumed to be the most penetrating size. The results indicate that the nanoparticle penetration through a face-sealed N95 respirator may be in excess of the 5% threshold, particularly at high respiratory flow rates. Thus, N95 respirators may not always provide the expected respiratory protection for workers. The highest penetration values representing the poorest respirator protection conditions were observed in the particle diameter range of approximately 30-70 nm. Based on the theoretical simulation, we have concluded that for respirators utilizing mechanical filters, the peak penetration indeed occurs at the particle diameter of approximately 300 nm; however, for pre-charged fiber filters, which are commonly used for N95 respirators, the peak shifts toward nano-sizes. This study has confirmed that the neutralization of particles is a crucial element in evaluating the efficiency of a respirator. The variability of the respirator's performance was determined for both models and both flow rates. The analysis revealed that the coefficient of variation of the penetration ranged from 0.10 to 0.54 for particles of 20-100 nm in diameter. The fraction of N95 respirators for which the performance test at 85 l min(-1) demonstrated excessive (>5%) penetration of nanoparticles was as high as 9/10. The test results obtained in a relatively small (0.096 m(3)) test chamber and in a large (24.3 m(3)) walk-in chamber were found essentially the same, thus, suggesting that laboratory-based evaluations have a good potential to adequately represent the respirator field performance.
منابع مشابه
Evaluation of N95 Filtering Facepiece Respirators Challenged with Engineered Nanoparticles
NIOSH-certified respirators, including N95 respirators, are recommended when engineering and administrative controls do not adequately prevent exposures to airborne nanomaterials. Laboratory evaluations of filtering efficiency using standard test aerosols have been reported in the literature, but there is no information on penetration of engineered nanoparticles (1–100 nm) for N95 filtering fac...
متن کاملEvaluation of a quantitative fit testing method for N95 filtering facepiece respirators.
A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal le...
متن کاملChallenge of N95 filtering facepiece respirators with viable H1N1 influenza aerosols.
OBJECTIVE. Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODs. Five N95 F...
متن کاملComparison of nanoparticle filtration performance of NIOSH-approved and CE-marked particulate filtering facepiece respirators.
The National Institute for Occupational Safety and Health (NIOSH) and European Norms (ENs) employ different test protocols for evaluation of air-purifying particulate respirators commonly referred to as filtering facepiece respirators (FFR). The relative performance of the NIOSH-approved and EN-certified 'Conformité Européen' (CE)-marked FFR is not well studied. NIOSH requires a minimum of 95 a...
متن کاملRespiratory protection provided by N95 filtering facepiece respirators against airborne dust and microorganisms in agricultural farms.
A new system was used to determine the workplace protection factors (WPF) for dust and bioaerosols in agricultural environments. The field study was performed with a subject wearing an N95 filtering facepiece respirator while performing animal feeding, grain harvesting and unloading, and routine investigation of facilities. As expected, the geometric means (GM) of the WPFs increased with increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Annals of occupational hygiene
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2006